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Abstract A selective fluorescent cesium optode on a
chromoionophore consisting of anthracene covalently linked
through an imine bond to a 15-crown-5 derivative has been
reported. In the present system, 15-crown-5 derivative
including anthracene was used a fluoroionophore. The
fluorescence response mechanism is based on the photo-
induced electron transfer (PET) from the lone pair of
electrons of the nitrogen to the anthracene group and
inhibition of PET system by cesium binding while increasing
the fluorescence intensity. Emission intensity 15-crown-5
anthracene was measured at 500 nm with absorbance at
400 nm in CH3CN–H2O (1:1) media. The method shows a
very good selectivity and sensitivity for cesium with respect
to other cations such as K+, Na+ and Li+ with linear range
and detection limit of 5.0 × 10−5 to 5.0 × 10−1M and 3.0 ×
10−6M respectively.
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Introduction

New methodologies and reagents for selective determination
of hazardous ionic species deteriorating the environment as a
result of human activities have appeared of great scientific
aims. The use of Chemo-sensors can be found in many
disciplines such as clinical and medical sciences, cell biology,

analytical chemistry, and environmental sciences due to the
almost-infinite number of possible target ions and a large
number of different techniques suitable for their study. There
is a significant need for the development of chemo-sensors
capable of selective recognition of cesium ions. The major
source of cesium is nuclear waste materials and its toxicity is
due to its ability to replace potassium in muscles and red cells.
In nuclear waste, cesium must be detected in a medium where
sodium and potassium are present in a large excess [1].
Various methods were reported for the determination of
cesium, including atomic absorption spectroscopy [2], radio-
analysis [3, 4] and ion-selective electrodes (ISEs) [5, 6].
Recent developments using ISEs were aimed at obtaining
very low detection limits [7]. Although those analytical
methods are sensitive and accurate, they have different
disadvantages of expensive instruments and controlled
experimental conditions. In contrast, fluorimetry is a simple
and highly sensitive method for the assay of a large number
of drugs and metals [8–11] and fluorimetric-based chemo-
sensor is a very interesting category for future practical
applications, thanks to the sensitivity, specificity, and low
costs of fluorescence measurements [12].

Fluoroionophore chemosensors are gaining interest due
to their easy use in solution as well as their high sensitivity
to and selectivity for trace metal ions. Many efficient
fluoroionophores have been developed for the specific
recognition of metal ions including alkali metals, alkaline
earth metals and zinc ions [13–15].

Anthracene and its derivatives constitute a very famous
class of fluorophores with very interesting photo-physical
properties. They are extensively used in designing lumi-
nescent chemosensors and switches and, recently, the
possibility of these aromatic units to give π–π stacking
and π–cation or π–H+ interactions has been successfully
investigated [16–23].
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In a fluorescent molecular sensor system, crown ether
derivatives have been commonly used as ionophores for
cations and crown ether-based ionophores have been widely
studied due to their structural and electronic features. They
show a high efficiency and good selectivity for alkali metal
ions [24, 25]. So many studies on the use of crown ether-
based ionophores for determining lithium [26–28], sodium
[29–31], potassium [32, 33], rubidium and cesium [34, 35]
have been successfully carried out. A number of 1, 3-
alternate calix[4]arenecrown-6 and -bis(crown-6) derivatives
containing coumarin, anthracene, and some other types of
fluorophores were utilized in determination of Cs+ [36–42].

As far to our knowledge, the fluorimetric determination of
cesium ion using the N-(4-benzo-15-crown-5) fluoroiono-
phore has not yet been reported. It (Fig. 1) has crown ether
recognition site and the anthracene moiety as fluorescent

signal transducer which are connected through an imine
linkage. The fluoroionophore shows remarkably high Cs+

sensitivity and selectivity with respect to K+, Li+ and Na+

ions. The interaction of a metal ion with an organic ligand
(crown-ether-based ionophores) may result in a fluorescent
enhancement of fluorophore. The enhancement in the
fluorescence intensity of 15-crown-5 derivative can be
explained by a photoinduced electron transfer (PET)
mechanism [43–47].

Experimental

Apparatus

Absorption measurements were carried out by a Shimadzu
UV/VIS spectrometer (model UV-1601PC). All the spectro-
fluorimetric measurements were conducted with a SPEX
Fluorolog-2 spectrofluorometer. The spectrometer used a
450-W xenon lamp as the excitation light source and an R
928 photomultiplier tube powered at 950V (Hamamatsu Co.)
as the detector. Absorbance and fluorescence measurements
were carried out in quartz cell of 1-cm path length. Excitation
and emission monochromator slit, increment, and integration
time were set at 1mm, 1nm and 1s, respectively. All spectral
data were obtained by SPEX DM 3000F spectroscopy
computer.

Reagents

All chemicals used were of analytical grade. Acetonitrile
(CH3CN) and metal nitrate salts (LiNO3, NaNO3, KNO3,
CsNO3) were obtained from Aldrich. 15-crown-5-anthracene
was kindly gifted by Prof. Jang (Dae-Gu University, Korea).
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Fig. 1 Structure of N-(4-benzo-
15-crown-5)-anthracene-
9-imine
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Fig. 2 Absorption spectrum of
15-crown-5-anthracene (5.0×
10−5 M) in CH3CN–H2O (1:1,
v/v)
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Stock solutions of alkali metal ions (1.0 × 10−1 M) were
prepared by dissolving the 99.9% pure metal nitrate salts in
purified water. The stock solution (1.0 × 10−4 M) of 15-
crown-5-anthracene was prepared by dissolving 15-crown-
5-anthracene in acetonitrile.

Results and discussion

15-crown-5-anthracene is fluorescent in CH3CN–H2O media.
It showed characteristic emission of anthracene at round
500 nm with absorbance at 400 nm (Fig. 2). Fluorescence
spectra in different composition of solvent are shown in
Fig. 3. Maximum emission intensity was obtained in solvent
a (CH3CN–H2O/2:1, v/v). Fluorescence intensity of 15-
crown-5-anthracene in solvent c is higher than that in solvent
b. These results indicate that protonation degree of 15-

crown-5-anthracene is higher in solvent c. To minimize
interference of protonation, the subsequent experiments were
performed in solvent b (CH3CN–H2O/1:1, v/v). In addition,
because of low intensity in the absence of cesium ion,
measurement in solvent b has advantage of the effective
observation (high sensitivity) for the enhancement of
fluorescence intensity by cesium ion.

The fluoroionophoric property of the 15-crown-5-
anthracene was investigated by measuring the fluorescence
in the presence of various concentrations of Cs+ ions. The
luminescence spectrum of the host free 15-crown-5-anthracene
was measured in CH3CN–H2O (1:1, v/v, Ex = 400 nm)
media. It showed a very poor fluorescence. The week
fluorescence intensity can be explained that the emission of
the anthracene group in the fluoroionophore is quenched by
intramolecular photo-induced electron transfer from the
lone pair of electrons of the nitrogen to the adjacent
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Fig. 3 Fluorescence spectra of
15-crown-5-anthracene (5.0×
10−5 M) in different composi-
tion solvents; λex=400 nm,
CH3CN–H2O (v/v) of (a) 2:1,
(b) 1:1, (c) 1:2
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Fig. 4 Fluorescence spectra of
15-crown-5-anthracene (5.0×
10−5 M) in the presence of
increasing concentration of Cs+

in CH3CN–H2O (1:1, v/v); λex=
400 nm, CsNO3 concentration
of (a) 0 M, (b) 5.0×10−5 M, (c)
7.0×10−5 M, (d) 1.0×10−4 M,
(e) 5.0×10−4 M, ( f ) 7.0×
10−4 M, (g) 1.0×10−3 M,
(h) 5.0×10−3 M, (i) 7.0×
10−3 M, ( j) 1.0×10−2 M,
(k) 5.0×10−1 M in CH3CN–
H2O solvent
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anthracene group [48]. In this medium, addition of Cs+

induces the enhancement of emission behavior of 15-crown-
5-anthracene as shown in the Fig. 4. Maximum fluorescence
intensity was observed at 500 nm with excitation at 400 nm.
The enhancement of fluorescence intensity upon cesium
binding suggests that upon complexation the lone pair of
electrons on the nitrogen of fluoroionophore is stabilized and
thermodynamically it is unfavorable for them to serve
intramolecular photo-induced electron transfer to the imme-
diate anthracene group upon photoexcitation of the fluo-
roionophore, causing the emission intensity to enhance. A
linear response of the fluorescence intensity as a function of
cesium concentration was observed from 5.0 × 10−5 to 5.0 ×
10−1M. The detection limit calculated as three times the
standard deviation of the blank signal was found to be 3.0 ×
10−6 M with correlation coefficient of 0.9985.

Finally we examined the selectivity of 15-crown-5-
anthracene for Cs+ with respect to other cations such as
Na+, K+, and Li+ (Fig. 5). The emission of 15-crown-5-
anthracene in CH3CN–H2O (1:1) is not affected by the
presence of Li+ and Na+ at the concentration as high as
0.5 M, excluding the possibility of strong complexation of
these ions by the fluoroionophore. The emission of
fluoroionophore shows a slight increment up to a concen-
tration of K+ about 0.5 M, indicating complexation of K+

with 15-crown-5-anthracene because of some high stability
constants ratio. In comparison with Na+, K+, and Li+ ions,
15-crown-5-anthracene shows outstanding selectivity for
Cs+ and excellent sensitivity (up to 3.0×10−6 M). As the
concentration of Cs+ ions increases, the fluorescence
intensity of the fluoroionophore increases, gaining its
maximum value at the concentration of Cs+ of ca. 0.5 M.

In conclusion these results demonstrated that the
fluoroionophore is a novel ion probe that exhibits remark-

ably high sensitivity and selectivity for Cs+ by several
orders of magnitude and has a good photochemical stability
compared to the other previously reported probes. We are
currently examining other potential fluorophores that may
induce a much intense fluorescence response upon com-
plexation of alkaline metal ions.
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